Γίνε μέλος στο grifoi.org

Στους γρίφους με τη σήμανση ".Άλυτοι 1-100" μπορούν να στέλνουν τις λύσεις τους μόνο τα Μέλη του site grifoi.org. Πληροφορίες για το πως θα γίνετε μέλος μπορείτε να διαβάσετε εδώ.

Πέμπτη, 5 Αυγούστου 2010

Πιθανοτήτων - Μία στάμνα (**)

Έχουμε μία στάμνα που περιέχει ανακατεμένους 49 λευκούς και 51 μαύρους βόλους. Οι βόλοι διαφέρουν μεταξύ τους μόνο ως προς το χρώμα τους.
Πόσους βόλους πρέπει να τραβήξουμε με κλειστά τα μάτια, ώστε να μεγιστοποιήσουμε την πιθανότητα να βγάλουμε ίσο αριθμό λευκών και μαύρων βόλων;

Σωστή απάντηση έχουν δώσει οι:
GRigori0s, Steli0s1, Chris, tsimartsie, batman1986, ΧΑΡΗΣ, trapatsas, fandom, MrKitsos, Pavlos D., pegasusgr, Kontoleon, enfante gatee, stratos, takis7up, civil, swt, Antonis1996, Stoyo, Καλογιαννίδης, Michalis, ksekarfotos, sotrixios, cool, 23os, πρεζοναυτης, Πάνος, saxon, kraptaki, offspring, rockwave, Πιθανολογος, ΘΑΝΑΤΟΣ, themis, Zo, stavgeor, killerado, gvoutsi1995, Nikos Stamatiou, Lucidreamer, manos, avevaios, ΕΑΛΕΞΙΟΥ, Θανάσης Παπαδημητρίου, BOMBER, xristoforos, Aliki, Crocodile23, Bicoulino, g.clifford, percival, manos, giorgaras55, Περικλης Μανιατης, s0k1s, tasoe, george ts, Theodor, parmapan, G SOZELGI, Peter V, takis, Manos Dounis, lakostas, sf, daskalos1971, sciamano caotico, alexpsomi, Kensh1n, PraikoN, Νεφέλη

Υπολογισμού - Στρατός μυρμηγκιών (***)

Ένας στρατός μυρμηγκιών έχει παραταχθεί σε μία γραμμή μήκους ενός μέτρου, ο ένας πίσω από τον άλλον και κινούνται με σταθερή ταχύτητα 6 μέτρα την ώρα. Ξαφνικά, το μυρμηγκάκι που βρίσκεται στο τέλος της ουράς θέλει να μεταδώσει ένα μήνυμα στον αρχηγό που βρίσκεται στην αρχή της ουράς. Ανοίγει λοιπόν το βήμα του, φτάνει στον αρχηγό με το μήνυμα και αμέσως επιστρέφει πάλι πίσω στη θέση του. Αυτή η αποστολή του μυρμηγκιού έγινε επίσης με σταθερή ταχύτητα και μόλις ολοκληρώθηκε, η γραμμή των μυρμηγκιών είχε μετακινηθεί κατά ένα μέτρο.
Ποια ήταν η ταχύτητα του μυρμηγκιού κατά τη διάρκεια της αποστολής του;

Σωστή απάντηση έχουν δώσει οι:
Papaveri, ΧΑΡΗΣ, alpapado, batman1986, aldel, trapatsas, fandom, MrKitsos, offspring, pegasusgr, xazos+xaroumenos!, enfante gatee, stratos, takis7up, xrhstaras, destyl, swt, Dimitrios, The Bug, Michalis, ksekarfotos, Antonis1996, Stoyo, jorgos, κωστικας, drakosdim, kraptaki, jimis petkos, saxon, konikuno, KITSIOS, Png, Nikolas A., gkk, Spyros, Xiaris, GooD, Evangelos, ΘΑΝΑΤΟΣ, stavgeor, fighter, akousis, Δ.Δ., Biorebel, cascader, tasosi2008, Κώστας Κ., vakos, billakos16, efthimis, Kyriakos, gedelbil, teo28april, st, Nikos Stamatiou, Θανάσης Παπαδημητρίου, ΕΑΛΕΞΙΟΥ, straniero, casperakos, g.clifford, takis, Ο_παρατηρητής, χρυση παν., p@nos, percival, qwerty, αχκακος, depier-2012, tasoe, ZORIKOS, Jp, nama, G SOZELGI, g&k, Steli0s1, vacha68, Antonios Seretis, dimsot1989, Κυριάκος Κουγιουμτζόπουλος, sf, Kris Geo, Stathis, daskalos1971, Πειραχτήρι, kakkalos, Kris Geo, bill1988, nerd, Kensh1n, grvoodoo, ΒΑΣΙΛΗΣ ΛΟΥΚΑΣ, JOELMARX, ΔΗΜΗΤΡΗΣ ΤΣΑΟΥΣΗΣ, Νίκος Ηλιόπουλος, Athanas79 P.,

Ανάλυσης - Λιώσιμο πάγου (****)

Σε μια μπανιέρα με νερό ρίχνουμε μέσα ένα καθαρό κομμάτι πάγου και όταν το νερό ηρεμήσει σημειώνουμε το ύψος της στάθμης του. Όταν ο πάγος θα λιώσει, το ύψος της στάθμης του νερού θα μειωθεί, θα παραμείνει σταθερό ή θα αυξηθεί και γιατί;
Οι απαντήσεις σας θα πρέπει να είναι πολύ αναλυτικές και αν είναι δυνατόν να συνοδεύονται από εξισώσεις που ισχύουν στη φυσική.

Σωστή απάντηση έχουν δώσει οι:
Steli0s1, alpapadο, filippos_s, Giannis, ΧΑΡΗΣ, aldel, trapatsas, Arkin, MrKitsos, batman1986, pegasusgr, djasotos, xazos+xaroumenos, stratostakis7up, swt, offspring, Agelos_X, Stoyo, Michalis, tg, jorgos, Antonis1996, peterpan, kraptaki, saxon, Nikolas A., Png, Evangelos, Princess Aribeth, stavgeor, BOMBER, Mark, Δ.Δ., ΒΙΚΙ, theo, Σαμαράς Απόστολος, efthimis, Kyriakos, st, Θανάσης Παπαδημητρίου, BOMBER, xristoforos, casperakos, ΕΑΛΕΞΙΟΥ, g.clifford, percival, qwerty, αχκακος, vassilistrend, tremo-asxc, depier-2012, MoMo, Χαράλαμπος Αλεξόπουλος, L, ΔηΓε, G SOZELGI, Panos, Μιχάλης Σταυρόπουλος, Aliki, sf, βασ.νταιφ, Antonios Seretis, daskalos1971, Πειραχτήρι, bill1988, Kris Geo, ΒΑΣΙΛΗΣ ΛΟΥΚΑΣ, Γιαννης Ορφανος, kakkalos, XENIOS ZEUS, ντινα, Stathis, Νίκος Ηλιόπουλος

Ανάλυσης - Σύνολο 15 (****)

Παίζετε το εξής παιχνίδι με έναν φίλο σας: Βάζετε πάνω σε ένα τραπέζι ανοικτά εννέα φύλλα μιας τράπουλας, αυτά με τους αριθμούς από 1 έως 9 (θεωρούμε πως ο άσσος είναι το 1). Στη συνέχεια ο κάθε παίκτης εναλλάξ παίρνει από ένα φύλλο και το βάζει μπροστά του. Αυτός που θα συγκεντρώσει πρώτος άθροισμα 15 κερδίζει το παιχνίδι.
Πρέπει να βρείτε την καλύτερη στρατηγική παιχνιδιού για κάθε μία από τις παρακάτω δύο παραλλαγές. Η πρώτη παραλλαγή είναι σχετικά εύκολη, ενώ η δεύτερη είναι δύσκολη! Και στις δύο παραλλαγές παίζετε πρώτος:

1η παραλλαγή: Το άθροισμα 15 υπολογίζεται με τα δικά σας φύλλα μαζί με τα φύλλα του αντιπάλου σας. Αν το άθροισμα ξεπεράσει το 15 τότε το παιχνίδι θεωρείται ισόπαλο. Με ποιες επιλογές φύλλων θα κερδίζετε κάθε παιχνίδι;

2η παραλλαγή: Το άθροισμα 15 υπολογίζεται από ΤΡΙΑ ΔΙΚΑ ΣΑΣ ΦΥΛΛΑ και αντίστοιχα ο αντίπαλός σας θα πρέπει να συγκεντρώσει άθροισμα 15 με τρία δικά του φύλλα. Τα φύλλα που θα συγκεντρώσει ο κάθε παίκτης μπορεί να είναι περισσότερα από τρία και το συνολικό άθροισμά τους μεγαλύτερο από 15, αλλά για να κερδίσει θα πρέπει ακριβώς τρία από αυτά να δίνουν άθροισμα 15. Ποιες επιλογές φύλλων είναι οι καλύτερες στην προσπάθειά σας να κερδίσετε το παιχνίδι;
Αν δεν μπορέσετε να βρείτε μόνοι σας τη λύση σ’ αυτήν την παραλλαγή, σας δίνεται σαν βοήθεια μία μόνο λέξη, η οποία όμως μπορεί να σας δώσει την απαιτούμενη έμπνευση! Μαρκάρετε με το ποντίκι την περιοχή μεταξύ των δύο βελών για να αποκαλυφθεί.
Λέξη βοήθειας: → ΤΡΙΛΙΖΑ

Σωστή απάντηση έχουν δώσει οι:
Papaveri, Godfather_X, fandom, aldel, kajabbar, offspring, batman1986, stratos, takis7up, swt, Antonis1996, Michalis, ksekarfotos, Kontoleon, Πάνος, jimis petkos, saxon, Elminster Aumar, ΘΑΝΑΤΟΣ, stavgeor, theo, efthimis, Xeliaz, BOMBER, Θανάσης Παπαδημητρίου, straniero, casperakos, g.clifford, ΕΑΛΕΞΙΟΥ, percival, kraptaki, qwerty, erratic, Aliki, jason1996, sf, Πειραχτήρι, G SOZELGI, daskalos1971, bill1988, alexpsomi, JOELMARX, kakkalos, ilias.alkidis,

Ανάλυσης - Αποτέλεσμα 1.000.000 (**)

Βρείτε δύο ακέραιους αριθμούς (του δεκαδικού συστήματος) που το γινόμενό τους να είναι ο αριθμός 1.000.000, αλλά κανείς από τους δύο να μην περιέχει το ψηφίο μηδέν.

Σωστή απάντηση έχουν δώσει οι:
GRigori0s, NIGHTMARE, a, tsimartsie, ΧΑΡΗΣ, Godfather_X, xatzisjr, alpapado, kasmerkas, P@NOS, Βασίλης, batman1986, bioamanas, fandom, Δημητρης, aldel, trapatsas, Pantelis, MrKitsos, Pavlos D., deniskol54565456, pegasusgr, offspring, stratos, takis7up, Καλογιαννίδης, xara, swt, Antonis1996, effie, Agelos_X, carabasj, kostas21, sarkiris, Dimitrios, Michalis, ksekarfotos, tg, Kontoleon, Danger, johnthegreek, teolabro, xristina, Πάνος, jimis petkos, kraptaki, rockwave, saxon, giannhs, @rtemis, Gkk, antmar, griffith, Eleni, noanh2opolo, Aris S, Png, Emily4ever, Steli0s1, Συνδυαστης, Test, than_kon, stauros, ΘΑΝΑΤΟΣ, Dreamkiller, darthvader, stavgeor, fighter, GT, Vizener, nikdant, maria, giannis, tasmil, killerado, Biorebel, kwstas148, cascader, tasosi2008, panos, ξενοφων, Μάγια, efthimis, Baggos, Ψυρούκης-Τριχ'ωνας, Giannismarg, r9, Xeliaz, gedelbil, st, Nikos Stamatiou, Θανάσης Παπαδημητρίου, manos8, giorgos k, joanna 1996, gvoutsi1995, mars, jason1996, Gipas, BOMBER, straniero, xristoforos, ΕΑΛΕΞΙΟΥ, efthymis, percival, AlexiouG, Kostakis Mp, g.clifford, takis, Leo28, alki, Καραγιάννη Ειρήνη, BAndrew, qwerty, stelios stylianou, Ο Άστατος, Mike Ambas, george ts, Tamy, Theodor, Χαράλαμπος Αλεξόπουλος, nama, Panos, G SOZELGI, Κυριαζής Γιώργος, voula, cris, nomnomnom, ZORIKOS, Haris kartalis, Fanis, demetris72, scap, voula, lakostas, Joanna Laura, sf, Stathis, βασ.νταιφ, daskalos1971, Antonios Seretis, Πειραχτήρι, nikos_ex, Χρηστος Χ., ΧΡ.ΧΑΣΑΝΕΑΣ, bill1988, asotos-ios, Kris Geo, kakkalos, Γ. Κ., guitaboygrizi, alexpsomi, Konstantinos, stem, John Corpet, panoslep, Γιασσιράνης Δημήτριος, nerd, Kensh1n, Alone, grvoodoo, ΒΑΣΙΛΗΣ ΛΟΥΚΑΣ, joelmarx, ΔΗΜΗΤΡΗΣ ΤΣΑΟΥΣΗΣ, Γρηγόρης, Gio, jim plivou, Xhino, Ink Ognito, Νεφέλη, C.K, Andreas_Loco, YIANNIS KAZIA, ΧΡΙΣΤΑΚΗΣ ΙΩΑΝΝΟΥ, Νίκος Ηλιόπουλος, finavia, sakis kefallinos, ilias.alkidis, Athanas79 P.,

Παράδοξα - Ένας ελέφαντας ζυγίζει όσο ένα κουνούπι (**)

Προσπαθήστε να βρείτε που βρίσκεται το λάθος στον παρακάτω υπολογισμό:
  1. Έστω πως $x$ είναι το βάρος ενός ελέφαντα και $y$ είναι το βάρος ενός κουνουπιού.
  2. Έστω πως $2b$ είναι το συνολικό τους βάρος. Δηλαδή $x+y=2b$
  3. Την πιο πάνω εξίσωση μπορούμε να την γράψουμε με δύο τρόπους: Α) $x=\,–y+2b$     Β) $x–2b=\,–y$
  4. Πολλαπλασιάζουμε κατά μέλη τις εξισώσεις Α και Β και παίρνουμε: $x(x–2b)=\,–y(–y+2b)\Leftrightarrow x^2–2xb=y^2–2yb$
  5. Προσθέτουμε σε κάθε μέλος της πιο πάνω εξίσωσης το $b^2$ και έχουμε: $x^2–2xb+b^2=y^2–2yb+b^2$
  6. Παραγοντοποιούμε και τα δύο μέλη με χρήση της γνωστής ταυτότητας: $(x–b)^2=(y–b)^2$
  7. Παίρνουμε την τετραγωνική ρίζα και των δύο μελών: $x–b=y–b$
  8. Προσθέτουμε το $b$ και στα δύο μέλη: $x=y$
και καταλήγουμε πως ένας ελέφαντας ζυγίζει όσο ένα κουνούπι!

Σωστή απάντηση έχουν δώσει οι:
GRigori0s, Steli0s1, NIGHTMARE, Godfather_X, Teo, alpapado, Baggos, Maestro, ΧΑΡΗΣ, isminiagios1991, batman1986, bioamanas, titanomegistoterastios, fandom, trapatsas, aldel, kajabbar, x_mac, Sourotiri, MrKitsos, offspring, pegasusgr, Pavlos D., xazos+xaroumenos!, Kontoleon, xrhstaras, nikos-sora, stratos, takis7up, enfante gatee, sotrixios, Christine MgKl, panagos, Agelos_X, Antonis1996, gousia, Geniuskanela, tg, swt, Aristotelis, Dimitrios, πρεζοναυτης, The Bug, Michalis, ksekarfotos, mstasos, Konstantinos Ts, 1st1, psofoC, Stoyo, dimitris83, Eris Skampis, panos, 23os,  johnthegreek, dpap78, Kordas Antonis, μαρια17, Kyrillos, Πάνος, saxon, jimis petkos, kraptaki, giannhs, Αυτοδιδακτος, vasil, sapounofouskes, griffith, konikuno, ΧΟΥΛΚ, Χάρης, diamanto, Κυριαζής Γιώργος, ΤΖΩΤΖΙΟΥ, Aris S, Spyros, Zaxarias, Test, Nick, anty, elenii, GooD, ΘΑΝΑΤΟΣ, necrothaftis, themis, epicas, Dreamkiller, alex, aristi, paris, fighter, DanielGraig, p.kritikos, CHRISFYT, stavgeor, stav, killerado, akousis, Δ.Δ., DrH, mars, GiorgosP, Ι.Σ., nik_pil, kwstas148, Babis, cascader, kostas, kostakis, panos, theo, Aspect, panos1982, profesorofchoise, efthimis, periklis, vad, Xeliaz, gedelbil, Nikos Stamatiou, st, debade, Μάνος8, Θανάσης Παπαδημητρίου, Γιώργος, Nikos Stamatiou, manos8, Christos II', vasilis, mousatos, Master, adria96, andreasi2008, vantsak, ION, BOMBER, elgato13, Crocodile23, Aliki, Tzortz1s, takis, koritsares, fokion, zou, ΕΑΛΕΞΙΟΥ, AlexiouG, percival, Maladict, Leo28, jason1996, argram, BAndrew, qwerty, tasosi2008, vassilistrend, stelios stylianou, Βαγγέλης, Roland_Of_Gilead, leoperisteri13, g&k, depier-2012, george ts, Tamy, γιωργος f.r., Mike Ambas, filareti, nama, dimitris94, Thanos, DepyAl, Stavros Karakepelis, VAKIS, Εύα, G SOZELGI, Panos, cris, Jason Tzimas, Περικλης Μανιατης, xpanos1999, Κώστας Χαραλαμπίδης, Nikos V, Anestis, Πέτρος, Σωτήρης, καιτη.π, Dimitris Passas, L, parmapan, KOSPOD, evelyn, Κυριάκος Κουγιουμτζόπουλος, SDAce, lakostas, Johnny, βασ.νταιφ, George Psom, Kodi NikaiaGR, Τροικα, jorge1, daskalos1971, στρατιωτης, Lucidreamer, Πειραχτήρι, antonisss, Παναγιωτης Καταραχιας, Χρηστος Χ, nikos_ex, Κάποιος, Jason Tarzan, ΔΡΟΣΕΡΟΣ, sf, Nikos Lentzos, Γεώργιος, Chica, παναης, ΧΡ.ΧΑΣΑΝΕΑΣ, mikes tsampounaris, Κυριαζής Γιώργος, gerodiak, geo, George Efthim, thanos logothetis, ZORIKOS, Kris Geo, asotos-ios, QuestionOfHeaven, NiSmO, PanosZero, Peter V, Konstantinos, alexpsomi, panoslep, zoe, John Samaras, nerd, Georgia Panagopoulou, anastasia589, Drifter, Kensh1n, Alone, grvoodoo, I Love Harry Potter, Teodoros Tsantilis, ΒΑΣΙΛΗΣ ΛΟΥΚΑΣ, jony, Γρηγόρης, γιωργοςταφ, Νεφέλη, Gio, Vag Rip, sxg, wfE EWFWAF, kakkalos, integral, YIANNIS KAZIA, Axilleas, ΧΡΙΣΤΑΚΗΣ ΙΩΑΝΝΟΥ, ΧΡΙΣΤΑΚΗΣ ΙΩΑΝΝΟΥ, Νίκος Ηλιόπουλος